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This paper oullines a theory of excitation of cscillations under the rather slow variations of a parameter
on which a system depends. The basic equation is a Mathieu equation. The basic method consists in reducing
the syatem to polar coordinates and applying perturbations.

l. INTRODUCTION

T has been known for a long time that if a parameter
of an oscillatory system (electrical or mechanical)
is varied periodically between certain limits, the system
becomes “excited,” that is, starts oscillating with fre-
quency equal to one-half of that with which the pa-
rameter varies. The term “parametric excitation” (p.e.
for short) is frequently used to designate this phe-
nomenon.

Perhaps the best known example of p.e. is the opera-
tion of a swing, that is, the “excitation” of a swing due
to a properly timed bending of the knees followed by a
subsequent straightening out on the part of the person
on the swing. Owing to this periodic raising or lowering
of the center of gravity of the body, the motion of the
swing starts from a small angle and is subsequently
maintained at a considerable angle of oscillation.

Melde! and Lord Rayleigh® were first to observe and
analyze this phenomenon. Rayleigh’s experimental ar-
rangement consisted of a siretched wire, one end of
which was fastened to the prong of a tuning fork, When
the fork is set in oscillation, thus causing a variation of
tension in the string, lateral oscillations of the latter
are excited with a frequency equal to one-half of that
of the tuning fork.

In later years L. Mandelstam and N. Papalexi® con-
structed an interesting “parametric generator” con-
sisting of an oscillatory circuit with a variable pa-
rameter (either the capacity C or inductance L). It is
observed that when the parameter is made to vary
around its average value with frequency f, the circuit
begins to oscillate with frequency f/2 in the absence of
any external source of eleciric energy. The experiment is
particularly well defined when the frequency f/2 co-
incides with the natural frequency of the oscillating
circuit. In their early experiments these authors oper-

incides with the natural frequency of the oscillating
circuit. In their early experiments these authors oper-
ated with a nearly linear circuit, in which case it was
observed that the voltage generated in the apparatus
rapidly reaches such a high value that the machine is
punctured. In order to obviate this, a nonlinear resistor
was inserted in series with the circuit; and it was found

I F. E. Melde, Pogz. Annalen 108, 308 (1859),

! Lord Rayleigh, “On maintained vibrations,” Phil. Mag. 15.
220-235, Fifth Series (April, 1883).

L. Mandelstam, N. Papalexi, A. Andronov, A. Wiy, and 5.
Chaikin, “Exposé des recherches recentes sur les oscillations non-
linéaires,” J. Tech. Phys. (U.5.5.R.) 2, 81-134 (1934) (a hibliog-
raphy en parametric excitation is appended to thiz paper).

that the voltage (and hence the energy generated in the
device) approaches a definite stationary value.

The study of this phenomenon is obviously amenable
to the differential equation (d.e. for short) with periodic
coefficients, a subject on which there exists a wvolu-
minous literature for the last seventy years or so. It
is well known that a typical equation of this kind, the
so-called Mathieu equation, has stable and unstable
zones in its “‘parameter space.” The p.e., by its nature,
is to be expected in the latter. The experiment shows,
however, that the phenomenon always adjusts itself so
as to be in these unstable zones. There is another com-
plication, namely, the lack of any theory of these d.e.
in the nonlinear range, On the other hand, most fre-
quently these phenomena occur precisely when the
system is nonlinear. In what follows we propose to out-
line a theory of this phenomenon on the basis of the
line a theory of this phenomenon on the basis of the
perturbation method introducing the polar coordinates
[o(f), 8(£)] where p(f) will be connected with the total
energy and @(!) will be the phase angle of the motion.
It will be shown that the existence of this effect is
closely related to the question of stability of the phase
around such a value, for which a steady increase of
energy is possible. Moreover, a nonlinear extension of
this method is also relatively simple.

2, LINEAR CASE; STABILITY OF THE PHASE

Since the reduction of the various practical cases of
p.e. to the Mathieu equation is well known,* we shall
start from the d.e. of the form

4 {1+ coswl)x=0, (2.1)*

where x is the variable of the problem (e.g., coordinate,
voltage, etc.), ¥ is the so-called index of modulation,
and w is the frequency with which the parameter is
varied.

Equation (2.1) is equivalent to the system of

i N, W. McLachlan, Theory and A pplications of Mathiew Func-
tions (Oxford University Press, 1947}, Sec. 15.50-15.54.

* 1t is preferable to deal throughout with dimensionless quan-
tities, If one designates time by #, angular velocity by o', the usual
form of the Mathieu equation encountered in applications is
d%e/df" (o' +8 cosw't)x=0. Here o and §' are obviously of
dimension T% Change of the independent variable from # to
== (a ) ¥ reduces this cqluali:m to (2.1), where y=#'/a’, w=w'(a’}
and f=(a")}.{' are clearly dimensionless. In Eq. (7.1) we use as
independent variable ¢ (time), but beginning with (7.2) we deal
again with the dimensionless time /= wol’.
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equations

I=y

§=— (14 coswi)x.

Changing to polar coordinates, that is, setting

x=r cosf p=r'=uxt4"
y=r sinf f=arctan(y/x),
the above system becomes
dp/dl= —yp coswl 5in28, (2.2)
a:flw' di= —1—+ coswi cosd. (2.3)

The variable p=x*+#*=2"++* may be regarded as
the square of the solution r(#) in the phase plane (r, ).
For a conservative system one can identify the curve
p(f) with the total energy of the system which is then
constant. However, this does not apply here, since the
system is not conservative. One may retain a certain
connection with energy if one agrees to consider the
motion of the representative point on the p(f) curve as
evolution of energy of the system in time. Thus, for
example, if p(t)—c when f— <o, this will mean that the
energy grows beyond any bound. If, however, p(f)
describes a certain closed curve p(8), this will mean that
a certain stationary (not necessarily constant in the
instantaneons. valne), enerqy, content. of. the system. is,
ultimately reached. The case w=2 is of primary in-
terest, since precisely in this case p.e. has been ob-
served experimentally. This gives

dp/di= —vp cos2t sin2f (2.4)
df/di=—1—+ cos2t cosf. (2.5)

Introducing the variable P(l)=logp(t) and choosing
any arbitrary instant of motion as /=10, one can set
P(0)=Py; 8(0)=¢y. The solutions of Eqs. (2.4) and
(2.5) are determined uniquely and, since they depend
analytically on the parameter v, one can represent them
by series development: '

P{¢}=iﬂ v P(t); 8(i) =>Eg v'8,(t). (2.6)

I one introduces these series into Eqs. (2.4) and (2.5)
and equates the terms with equal powers of v, one ob-
tains a series of d.e.,

Pumﬁ, Pi= —cos2t sin2d,;
Pa=—2 cos2l cos20,-0h; (2.7}

(14 cos28y);
fla=cos2!. sin2b,. §;. (2.8)

fo=—1: & =—1 cos2l.

From these one can compute recurrently all terms of
the expansion (2.6) with the initial conditions implied
by the set-up, viz.:

P,(0)=0; 6,(0)=0,
In this manner one obtains

Py(t)=Po; Pi()=— (3 sinepq)!t
+periodic terms- -+ (2.10)

p=12 - (2.9)
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()= — (3 cos2eo)t
~+periodic terms, - - -,

Bolt) = wo—1;
(2.11)

where the periodic terms resume the same values if {
is increased by 2r.

Thus, starting from a point (Py, ¢) at (=0 in
the phase plane, one reaches at !=2r the point
[ P(2x), 8(2x)] given by the expressions

P(2n)=Py—my sin2ee+0(+*) (2.12)

0(2m) = po—2r— g7y cos2en+0(v%),  (2.13)

where the terms (0(+?) are analytic functions of ¢, and
v and are independent of P;,. These terms result from
the secular terms of the higher orders.

It is to be noted that the values P, and ¢, enter into
the solutions (2.10) and (2,11) in a different fashion.
It is clear from Eqgs. (2.4) and (2.5) that with each
solution P(t) and 8(f), the functions P(i)+const, 8(f)
provide another solution. Thus, P, enters the solution
in a simple additive way, while the dependence of the
solution on ¢y is more complicated.

It is seen that in the time interval 2x the point
(Pg, o) undergoes transformations of the form (2.12)
and (2.13). Consider first the changes of the phase
only modulo 2r; in each period 2m the phase will vary
by an amount

Ape=—}ry cos2eut+0(r2). (2.14)

There are two distinct values of ¢q leading to Age=0;
namely,

o0 =(r/4)+0(y) and @o'=(3x/4)+0(y), (2.15)

as easily observed from (2.14) and the requirement
Ape=0.
For ¥ 2r in the neighborhood of ¢q" one has

Ape>0 for g e’; Ape<0 forpe<ed. (2.16)
For ¢ in the neighborhood of ¢ one has
Aea<0 for en>wen’’: Aee>0 for ea<en’. (2.17)

T'here are two distinct values of g leading to Ape=0;
namely,

o' =(w/4)+0(y) and @o"=(3x/4)+0(v), (2.15)

as easily observed from (2.14) and the requirement
Apg=0.
For ¥ 2r in the neighborhood of ¢," one has

Agy>0 for o> @’; Apa<0 forpe<en'. (2.16)
For ¢ in the neighborhood of ¢, one has
Ago<0 for @>e’’; Aee>0 for ea<<en'. (2.17)

In other words, the point ¢y’ is a point of repulsion
for neighboring phases under the transformation (2.14),
while the point ¢o" is a point of attraction. This means
that ¢," is a stable phase which any initial phase will
approach eventually.

While the initial phase ¢n approaches its stable
value g0, changes will occur also in the energy term P.
Once the stable phase has been reached, the energy
term increases in each interval 2w by a fixed positive
amount,

APy=~+=y+0(y"), (2.18)

so that the energy ultimately grows beyond any bound
as was actually observed by Mandelstam and Papalexi
in their experiments with a linear parametric generator.

3. FREQUENCIES OTHER THAN w=12

All experiments evidence so far available relates to
the case when w=2 in the d.e. (2.2) and (2.3}. In com-
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parison, t:stio to whether p.e. may occur for
other valw hzen neglected. It can be shown,
however, at leas far as the terms of the first
order are rnec: p.e. does not appear for any
frequency tha=2.

Proceec presly one finds

fi=—(1/wl—Hw+2) Jeos2go sin(w=-2)f
—[1/4(Jcosin{w—2)!
+11/4(Jsincos(w+2)t—1]
-4(d Jsin2¢o[cos(w—2)i—1]. (3.1)

It is seit if !, #, is a periodic function with
period 2w is izr) containing harmonics, It 15
to be notat third term on the right side of
Eq. (3.1)e lin=2 becomes the secular term
appearingy. (i In fact, it is sufficient to set
w—2=x to yto the limit (sinx!/x). =1,
which givt teLikewise, one finds that the last
term in (s zet the limit w=2. In a similar
manner ccert: that the expression for Py(f)
does not «a ser terms; namely,

Pi(t)=—sin2¢p{[1/2(w+2) Jsin(w+2)t
+[1/2(w—2) Jsin(w—2)¢|
—c0s2¢q] [1/2(w+2) J[cos(w+2)i—1]
—[1/2(w—2) Tcos(w—2)t—1]}, (3.2)

inasmuch as all terms are periodic if w#2. One finds
that the second term on the right of Eq. (3.2) degen-
erates into a secular term at the limit w=2 and that
P, does not contain secular terms, while 8 does. This
means that p.e. exists only in still higher orders and
for that reason is negligible.

4. NONLINEAR CASE

The great majority of cases encountered in applica-
tions are of the nonlinear type. The Melde-Rayleigh
experiment is an example of this type. In fact, the
stationary amplitude in this case is reached owing to
the nonlinear elasticity of the vibrating wire for larger
amplitudes. Moreover, in all cases there is a dissipation
of energy in one form or another.

The perturbation procedure outlined in the preceding
sections gives a convenient tool for the investigation
of the nonlinear range of the phenomenon of p.e. to
which the classical methods of d.e. with periodic co-
efficients do not apply. For that reason, instead of Eq.
(2.1) we shall investigate now a d.e. of the form,

24 pi4-f(x)+yx cos2t=0,

where, as is frequently done in applications, the non-
linear term f(x) may be assumed to be of the form
x2+4-ea?; that ig, we will consider the equation

i+ pi+ (14 cos2f)x+ex*=0. (4.1)

Moreover, we will assume that ¢ and p are small num-
bers of the same order as . The form (4.1) results from
keeping only the terms of the first order and assuming
w=2 as previously.

The perturbation procedure yields the following dif-
ferential equations:

dP,/di=—2B sin*f#;— cos2! sin28,
— L Apo(ein26,+1 sindfy), (4.2)

dy/di=—3%85 sin28;— cos2{ cos*8y— Ap cos'dy, {4.3)

where 4 =¢/y, B=p/y, and 8y=¢—{ as before.
The integration yields

Pi=—1%(sin2¢s+2B)i+periodic terms, (4.4
8,= — }(cos2¢e+3 A po)t+periodic terms.  (1.3)
After one period 2r the quantities P; and #; undergo

AP= —xvy(sin2eo+2B)+0(4%);
Ap=—3ry(cos2p+24p0)+0(y2). (£6)

Setting 2xy= At and considering Af as d! in the prob-
lem_jnvghring the stodv.of matinn, in the. caurge.of
lem involving the study of motion in the course of
many periods 2w, one can replace the difference equa-
tions (4.6} by the following differential equations de-
scribing the behavior of the system in the long run

dp/dt=—1p(sin2¢+2B), (4.7)
dp/di=—%{cos2e+34p). (4.8)

The singular point of this system is given by equa-
tions,

sin2gy=—28; cos2eo=—3Ap,
which gives
po=(34)(1—-4B%). (4.9)

In order to investigate the stability of the singular
point, we form the variational equations of Eqs. (4.7)
and (4.8), via.:

dép/dl=—py cos2yy-bep; dig/dl=—3Adp
+4 sin2gbp.  (4.10)

The characteristic equation of (4.10) is
5*— 1 sin2¢S— § Ape cos2pe=0. (4.11)

Replacing the coordinates of the singular point ps, ¢n
by their values gives

S*+BS+1(1—4B%)=0. (4.11a)

The singular point is a saddle point if 1—45°*<0, that
is, if y<2p. If 1—485*>0, one has either a nodal point
if ¥<(5)!p, or a focal point if y>(5)!p, these singu-
larities being stable.

From Eq. (4.9) one notes that the condition of reality
of the stationary amplitude pq is ¥>2p, that is, the
same as for the absence of the saddle point, which is
obvious, since no closed periodic trajectory can exist
enclosing a singular point with index j= —1.

For a conservative system (B=0), Eq. (4.11a) be-
comes S*+}=0, that is, the singular point is a vortex
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1 Fic. 1. Sector of
C self-excitation.
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point. In this case from Eq. (4.9)

po=2v/3¢. (4.12)

We conclude, therefore, that a conservative nonlinear
system excited parametrically is generally unstable in
the sense in which the word “stability” is understood
in application. In other words, if a perturbation devi-
ates the system from its stationary condition, this
effect will not be reduced in time, since the representa-
tive point in the (p, ¢) plane will describe indefinitely
a closed curve containing the vortex point in its in-
terior. In the (p, #) plane this circumstance results in
parasitic amplitude and phase modulations. Since the
disturbances are erratic, so will be these modulations,
although on (ke average there will be still a stability (in
the sense of Liapounoff) in that the motion will remain
in a bounded region of the phase plane. From this
standpoint the presence of a dissipation of energy is
beneficial in that it smoothes out these parasitic
phenomena.

5. CONDITIONS OF SELF-EXCITATION OF
NONLINEAR SYSTEMS

In the case of linear systems (2.4), (2.5) it was pos-

sible to eliminate the variable g on the right-hand side
of (2.4) by introducing an auxiliary variable P(f) and
to thus reduce the system to a relatively simple form.
For a nonlinear system this is not the case, and it is
necessary to limit the analysis to a qualitative discus-
sion. A difficulty presents itself if one attempts to set
p=0 in order to determine the conditions of self-ex-
citation from rest. Since p is the energy content of the
system, it is clear that the condition p=0 entails also
that all other dynamical variables (currents, voltages,
velocities, etc.) are also zero, in which case the concept
of the phase ¢ loses its physical significance.

In reality there always exists a small initial energy
content in any physical system. Thus, for instance, if
the system is electrical, stray charges on a condenser
account for this initial electrostatic energy p1. As to the
phase ¢, it is to be assumed as entirely arbitrary. For
that reason it is necessary to investigate the starting
of the phenomenon for any value of the initial phase ¢,.

From Eq. (4.7) it follows that dp/di>0 if (sin2e
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+2B)<0. Assuming first 0<2B<1, this condition is
fulfilled if sin2¢<0 and |sin2¢|>2B. This defines a
sector AOA" (Fig. 1) which we may call the secfor of
self-excitation (s.s.e. for short). If 2¢ is in s.s.e., p in-
creases, If 2¢ is outside this sector, the small initial p,
will be further reduced. The semi-angle 3 determining
the s.5.e. is given by the relation cosf=2B.

For reasons which will appear later, we shall consider
the boundaries OA and OA’ of the s.s.e. as belonging to
it. For a nondissipative system the s.s.e. becomes the
lower half-circle CBC'. When y=2p (which is the
threshold between the region of saddle points and that
of nodal points), the s.s.e. shrinks to the line OB.

We shall investigate four different cases when the
initial phase 2¢; is situated in the sectors BOA’, 40B,
B'04’, and B'OA.

In BOA' cos2e, >0 and, therefore, de/di<0. The
phase angle will move clockwise and will enter the
sector OB, Since in this sector cos2¢ <0, the two terms
on the right side of Eq. (4.8) are of opposite signs, so
that de/dt=0 when |cos2¢| =34p. In AOB p increases
while the phase, for which de/di=0, shifts gradually
toward 0. During this shift dp/di decreases and be-
comes zero at 04, where dg/df also becomes zero by
Eq. (4.8). The phase angle 2¢, of the singular point is
thus OA.

If the initial phase 2¢; is in B'OA’, de/dI<0 and,
since in this sector dp/dt<0, the small initial value p,
is still further reduced, and we can neglect the second
term on the right of Eq. (4.8). Under these conditions,
the phase 2¢; will enter the s.s.e. through the boundary
0A' and will reach the stable phase 04 in the manner
which we have just investigated.

If 2¢, is in B'OA, de/di>0 so that the phase will
enter the s.s.e. through its boundary O 4. This time 0A
will not be a position of equilibrium for 2¢ on account
of the fact that p=0 during this passage through 04.
Therefore, the phase 2¢ will enter AOB, where p will
increase to a value for which de/dt=0. Since in A0B »
is increasing, this position of equilibrium for p will
gradually shift itself toward OA, where both positions
of equilibrium for p and for ¢ will be simultaneously
attained as was previously shown.

Summing up, from any initial phase 2¢,, the ultimate
stable phase 2¢s will be 0A ; and when the phase settles
on this value, the variable p also reaches a stable equi-
librium which corresponds thus to the singular point
of the system (4.7) and (4.8).

It remains to investigate the case when B> (i.e,
when y<2p). From Eq. (4.7) it follows that dp/dt<0
for any 2e. Since p, originally small, decreases con-
tinuously, from Eq. (4.8) it follows that cos2e deter-
mines the stability of the phase. By a simple argument
one finds that 2ge==/2 is an unstable phase and 2,
=3w/2 is a stable phase. This case corresponds at the
same time to the condition for the existence of a saddle

point.
We are thus led to identify the existence of a saddle
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point of Eqs. (4.7) and (4.8) with the loss of the initial
energy of the system or, using a different language,
when the parameter variation is too small to be able to
“cross the threshold” of parametric excitation. It is
useful to mention that no such threshold exists in the
case of a nondissipative system (p=B=0). In fact, the
condition y<2¢ in this case would be y<0, which is
impossible, since ¥ is an essentially positive quantity.
We saw that the only possible equilibrium in this case
i5 that of a vortex point.

6. EXPERIMENTAL EVIDENCE

From the preceding it follows that the parameter
variation is the cause of the phenomenon and the cumu-
lative excitation of the system is its gffect. Hence, any
perturbation in the former inevitably reacts on the
latter. Moreover, the phenomenon is possible on ac-
count of the stability of the phase. If, therefore, the
latter is disturbed, the disturbance also reacts on the
amplitude. One can easily demonstrate this effect by
disturbing the phase of the parameter variation. In
this manner the old phase of motion ceases to be a
stable phase ¢ relatively to the new phase of the
parameter, so that a period of readjustment of the
phase of motion to the new phase of the parameter
takes place. During this transient period, investigated
in Sec. 2, the energy injection into the system is also
modified, resulting in a certain “dip” of the amplitude
as compared to its value prior to this sudden change.
After the phase adjustment has taken place, the ampli-
tude resumes its former value.

The oscillogram of Fig. 2 shows this phenomenon.
The vibrating wire (as in Lord Rayleigh’s experiment)
was used in this experiment as a coupling capacitor,
the other side being 2 small aluminum plate under the
wire, A 200-kilocycle carrier signal passing through this
capacitor was thus modulated by the wire vibration.

The modulated signal was amplified through several
tuned stages and detected. The detected signal was fed
both to the vertical amplifier of a cathode ray oscillo-
scope for a visual observation and through a direct
current amplifier to a Brush BL202 recorder. The phase
of the exciting 60-cycle current in the magnet was
changed once a second by switching in and out of the
circuit an auxiliary series condenser-resistor combina-
tion. The phase change so produced was about 890
with the voltage across the magnet coil remaining prac-
tically constant. The record as given in Fig. 3 shows
the normal decay of the wire with the excitation
removed.
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Fra. 3. Decay of an oscillation with the excitation removed

The author is indebted to Mr. M. Blumberg for this
experiment.

7. PARAMETRIC EXCITATION BY A RECTANGULAR
RIPPLE

Instead of a sinusoidal variation of the parameter,
the p.e. can be obiained also by means of a discontinu-
ous variation of the parameter. We shall consider the
simplest case of a rectangular ripple where during fixed
time intervals the parameter remains in its maximum or
minimum values. This case can be analyzed in an ele-
mentary way and already leads to all phenomena con-
nected with parametric excitation.

The differential equation of the rectangular ripple
excitation is of the so-called Hill-Meissner type and
can be represented by the two elementary equations

ftaxr=0 Itarx=0 {7.1)

replacing each other after fixed prescribed time inter-
vals. The solution is required to vary continuously in
time.

The integral curves of the Eqs. (7.1) are ellipses

(a2 a") (/") =1, (7.2)

where 3b°=/ measures the energy of the system at the
moment cousidered and a*= 2 /e . Thus, the repre-
sentative point {x, ¥) in phase space will describe a
path which is composed of elliptic arcs belonging to
two families of concentric ellipses with axis ratio «, or
@, respectively.

In order to deal with a particularly simple and in-
structive situation, let us assume that the intervals of
the rectangular ripple are chosen in such a way that
the parameter a; is replaced by the parameter ey when
the representative point crosses the axis x=0 and that
@2 15 again replaced by «; whenever the point crosses
the axis y=10. The point (x, v) needs the time = (1/a;)
+{1/a) ] in order to describe an angle 2r around the
origin, and in this time the parameters a; and a. hold
twice during time intervals #/2a; and 7/2as, respec-
tively. This model bears some analogy to the case w=12
of continuous parameter variation and should be com-
pared with it.

Let us study now the evolution of the energy of the
system if the representative point describes one turn
around the origin. It is clear that if we fit two ellipses
of the type (7.2) continuously together at the axis
x=0, we will have to require that both have the same
value &, while if we put them continuously together at
the axis y=0, we will have to require the same value of
a for both. Since b=2} i= closelv related to the energy

of the system, we recognize that no energy change
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takes place if the representative point crosses the axis
x=0. This is physically evident, since at this moment
the whole energy of the system is kinetic and none of it
is potential; hence, a sudden change of the constant of
potential energy can have no influence on the energy
content of the system. If, however, the axis y=0 is
crossed the condition that g be unchanged leads to the
condition

hfad=h /o) (7.3)

if k is the energy content before the crossing and A’
after it. Thus, in one turn around the origin the original
energy is to be increased (or decreased) in the ratio

;I:fh;ﬁ (ﬂ}fﬂg}‘. (?4}

If a;>as the system will absorb energy in each
turn; but if a;<as, the energy will be drained away
from it. This reduction of energy has in all respects the
character of a damping, but this damping is effected
not by a dissipation of energy but by making the system
do external work. By analogy with the term *‘para-
metric generator’ one could designate this performance
as “parametric damper.”

If &> a; are given, the described type of parametric
variation leads to a continuous increase of energy of
the system, Let now this process of variation be shifted
by a quarter phase against the phase of the motion;
i.e.,, change from o, to a; if the y=0 axis is crossed
and from as to e, if the x=0 line is passed. The roles
of ay and e, are interchanged and instead of parametric
excitation we obtain parametric damping. Analogous
calculations can easily be carried out for any phase
difference ¢ between the parameter change and the
phase of the motion. The phase difference ¢ attained
by the system for given rectangular ripple is deter-
mined by stability considerations.

The analysis contained in this section does not in-
volve any question of stability. On the other hand, from
a direct discussion of the differential equation (Sec. 2)
it was found that there exists a stable phase at which
the phenomenon stabilizes itself; this phase corre-
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sponds also to the maximum absorption of energy.
Hence, this is the only case which is accessible to the
experiment, all other phases being ruled out by the
condition of stability. This applies particularly to the
range in which the parametric damping occurs.

As far as known, there exists no experimental evi-
dence regarding the existence of parametric damping,
although on the basis of the preceding argument it
seems plausible to assume that it exists if proper ex-
perimental means are provided. One can, for example,
envision the following arrangement: assume that in
the Melde-Rayleigh experiment we produce sustained
lateral oscillations of the wire by some means. By
deriving a voltage from this oscillation and shifting it
by means of a phase shifting network by an appropriate
phase angle, one may expect that one can reach a point
for a definite value of the phase at which the operation
of the parameter, instead of exciting the lateral oscilla-
tions, will, on the contrary, extinguish them.

A “feed-back” arrangement of this kind will impose
an arbitrary phase to the parameter instead of operat-
ing with the free phase, so to speak, which adjusts itself
automatically to the stable point by virtue of the
stability condition mentioned in connection with Egs.
(2.16) and (2.17).

In conclusion, it is useful to note that it seems
plausible to admit that the conclusions obtained on the
basis of the Hill-Meissner equation are applicable also
to the Mathieu equation, as was pointed out in the
past, although there exists no formal justification of
this point as far as is known. One observes this in-
directly from the fact that the formulas {2.18, Mathieu)
and (7.7, Hill-Meissner) for small values of vy give a
fairly consistent result especially because (2.18) re-
lates only to the first approximation.
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fessor M. Schiffer for wvaluable discussions of this
matter.

This work was carried out under the authority of the
ONR. The permission to publish this paper is greatly
appreciated.



	para1.jpg
	para2.jpg
	para3.jpg
	para4.jpg
	para5.jpg
	para6.jpg

